简单示例,一个用 CNN 识别 MNIST 手写数字的模型。数据是 60,000 张训练和 10,000 张测试的 28×28 灰度图,先归一化到 0-1,再加通道。模型用两层卷积(32 和 64 个滤波器)提取特征,两层池化缩小尺寸,再展平后用两个全连接层(128 和 10 个神经元)输出概率。训[……]
用 CNN(卷积神经网络)识别手写数字(0-9)
Leave a reply
简单示例,一个用 CNN 识别 MNIST 手写数字的模型。数据是 60,000 张训练和 10,000 张测试的 28×28 灰度图,先归一化到 0-1,再加通道。模型用两层卷积(32 和 64 个滤波器)提取特征,两层池化缩小尺寸,再展平后用两个全连接层(128 和 10 个神经元)输出概率。训[……]